CANKAYA UNIVERSITY

FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

ME 211 THERMODYNAMICS I Fall 2018 SYLLABUS

Prof.Dr.Nevzat ONUR

Office: LA-20

E-mail: nevonur@cankaya.edu.tr

CHAPTER 1.GETTING STARTED: INTRODUCTORY CONCEPTS AND DEFINITIONS

- 1.1 Using Thermodynamics
- 1.2 Defining Systems
- 1.3 Describing Systems and Their Behaviour
- 1.4 Measuring Mass, Length, Time and Force
- 1.5 Two Measurable Properties : Specific Volume and Presure
- 1.6 Measuring Temperature
- 1.7 Engineering Design and Analysis

CHAPTER 2.ENERGY AND THE FIRST LAW OF THERMODYNAMICS

- 2.1 Reviewing Mechanical Concepts of Energy
- 2.2 Broading Our Understanding of Work
- 2.3 Broading Our Understanding of Energy
- 2.4 Energy Transfer By Heat
- 2.5 Energy Accounting : Energy Balance for Closed Systems
- 2.6 Energy Analysis of Cycles

CHAPTER 3.EVALUATING PROPERTIES

3.1. Fixing the State

Evaluating Properties: General Considerations

- 3.2 p-v-T Relation
- 3.3 Retrieving Thermodynamic Properties
- 3.4 Generalized Compressibility Chart

Evaluating Properties Using The Ideal Gas Model

- 3.5 Ideal Gas Model
- 3.6 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases
- 3.7 Evaluating Δu and Δh of Ideal Gases
- 3.8 Polytropic Process of an Ideal Gas

CHAPTER 4. CONTROL VOLUME ENERGY ANALYSIS USING ENERGY

- 4.1 Conservation of Mass for a Control Volume
- 4.2 Conservation of Energy for a Control Volume
- 4.3 Analysis of Control Volumes at Steady State
- 4.4 Transient Analysis

CHAPTER 5. THE SECOND LAW OF THERMODYNAMICS

- 5.1 Introducing The Second Law
- 5.2 Indentifying Irreversibilities
- 5.3 Applying the Second Law to Thermodynamic Cycle
- 5.4 Defining the Kelvin Temperature Scale
- 5.5 Maximum Performance Measures for Cycles Operating Between Two Reservoirs
- 5.6 Carnot Cycle

CHAPTER 6.USING ENTROPY

6.1 Introducing Entropy

- 6.2 Defining Entropy Change
- 6.3 Retrieving Entropy Data
- 6.4 Entropy Change in Internally Reversible Process
- 6.5 Entropy Balance for Closed Systems
- 6.6 Entropy Rate Balance for Control Volumes
- 6.7 Isentropic Processes
- 6.8 Isentropic Efficiencies of Turbines, Nozzles, Compressors, and Pumps
- 6.9 Heat Transfer and Work in Internally Reversible, Steady-State Flow Processes

CHAPTER 7.EXERGY ANALYSIS

- 7.1 Introducing Exergy
- 7.2 Defining Exergy
- 7.3 Closed System Exergy Balance
- 7.4 Flow Exergy
- 7.5 Exergy Rate Balance for Control Volumes
- 7.6 Exergetic (Second Law) Efficiency