Steam Tables Tutorial (Illustration of Steam Tables Process Overview)

Example 1 (p and T given)

Given: $p_1 = 30$ bar, $T_1 = 320^{\circ}$ C

From Table A-3 @ $p_1 = 30$ bar $T_{sat1} = 233.9^{\circ}C$

Conclusion: Since $T_1 > T_{sat1}$,

- State 1 is Superheated vapor
- Obtain properties from Table A-4

Example 1 (p and T given)

Given: $p_1 = 30$ bar, $T_1 = 320^{\circ}$ C From Table A-2 @ $T_1 = 320^{\circ}$ C $p_{sat1} = 112.7$ bar

Conclusion: Since $p_1 < p_{sat1}$,

- State 1 is Superheated vapor
- Obtain properties from Table A-4

Example 2 (p and T given)

Given: $p_2 = 25$ bar, $T_2 = 100^{\circ}$ C

From Table A-3 @ $p_2 = 25$ bar $T_{sat2} = 224.0^{\circ}C$

Conclusion: Since $T_2 < T_{sat2}$,

- State 2 is Compressed liquid
- Obtain properties from Table A-5 or A-2 (approximate as saturated liquid)

Example 2 (p and T given)

Given: $p_2 = 25$ bar, $T_2 = 100^{\circ}$ C

From Table A-2 @ $T_2 = 100^{\circ}$ C $p_{sat2} = 1.014$ bar

Conclusion: Since $p_2 > p_{sat2}$,

- State 2 is Compressed liquid
- Obtain properties from Table A-5 or Table A-2 (approximate as saturated liquid)

Example 3 (p and T given)

Given: $p_3 = 5$ bar, $T_3 = 151.9$ °C

From Table A-3 @ $p_3 = 5$ bar $T_{sat3} = 151.9^{\circ}C$

Conclusion: Since $T_3 = T_{sat3}$,

- State 3 is Two-phase liquid-vapor mixture
- Need another property to obtain properties

Example 4 (p and T given)

Given: $p_4 = 15.54$ bar, $T_4 = 200$ °C

From Table A-2 @ $T_4 = 200^{\circ}$ C $p_{sat4} = 15.54$ bar

Conclusion: Since $p_4 = p_{sat4}$,

- State 4 is Two-phase liquid-vapor mixture
- Need another property to obtain properties

Example 5 (T and v given)

Given: $T_5 = 80^{\circ}$ C and $v_5 = 0.0010200 \text{ m}^3/\text{kg}$

From Table A-2 @ $T_5 = 80^{\circ}$ C

 $v_{\rm f5} = 0.0010291 \text{ m}^3/\text{kg}$ and $v_{\rm g5} = 3.407 \text{ m}^3/\text{kg}$

Conclusion: Since $v_5 < v_{f5}$,

- State 5 is Compressed liquid
- Obtain properties from Table A-5 or Table A-2 (approximate as saturated liquid)

Example 6 (T and v given)

Given: $T_6 = 80^{\circ}$ C and $v_6 = 1.2 \text{ m}^3/\text{kg}$

From Table A-2 @ $T_6 = 80^{\circ}$ C $v_{f6} = 0.0010291 \text{ m}^3/\text{kg}$ and $v_{g6} = 3.407 \text{ m}^3/\text{kg}$

Conclusion: Since $v_{\rm f6} < v_6 < v_{\rm g6}$,

- State 6 is Two-phase liquid-vapor mixture
- Determine quality (x_6) and use quality calculations to compute desired properties

Example 7 (T and v given)

Given: $T_7 = 80^{\circ}$ C and $v_7 = 4.625 \text{ m}^3/\text{kg}$

From Table A-2 @ $T_7 = 80^{\circ}$ C $v_{f7} = 0.0010291 \text{ m}^3/\text{kg}$ and $v_{g7} = 3.407 \text{ m}^3/\text{kg}$

Conclusion: Since $v_7 > v_{g7}$,

- State 7 is Superheated vapor
- Obtain properties from Table A-4

Example 8 (p and u given)

Given: $p_8 = 80$ bar and $u_8 = 1200 \text{ m}^3/\text{kg}$

From Table A-3 @ $p_8 = 80$ bar

 $u_{\rm f8} = 1308.6 \text{ kJ/kg}$ and $u_{\rm g8} = 2569.8 \text{ kJ/kg}$

Conclusion: Since $u_8 < u_{f8}$,

- State 8 is Compressed liquid
- Obtain properties from Table A-5 or Table A-2 (approximate as saturated liquid)

Example 9 (p and u given)

Given: $p_9 = 80$ bar and $u_9 = 1600 \text{ kJ/kg}$

From Table A-3 @ $p_9 = 80$ bar

 $u_{\rm f9} = 1308.6 \text{ kJ/kg}$ and $u_{\rm g9} = 2569.8 \text{ kJ/kg}$

Conclusion: Since $u_{f9} < u_9 < u_{g9}$,

- State 9 is Two-phase liquid-vapor mixture
- Determine quality (x₉) and use quality calculations to compute desired properties

Example 10 (p and u given)

Given: $p_{10} = 80$ bar and $u_{10} = 3102.7$ kJ/kg **From Table A-3** @ $p_{10} = 80$ bar

 $u_{\rm f10} = 1308.6 \text{ kJ/kg}$ and $u_{\rm g10} = 2569.8 \text{ kJ/kg}$

Conclusion: Since $u_{10} > u_{g10}$,

- State 10 is Superheated vapor
- Obtain properties from Table A-4

Example 11 (T and x given)

Given: $T_{11} = 80^{\circ}$ C and $x_{11} = 0.6$

Conclusion:

- State 11 is Two-phase liquid-vapor mixture
- Use quality calculations with saturated liquid (f) and saturated vapor (g) values from Table A-2 to compute desired properties From Table A-2 @ $T_{11} = 80^{\circ}$ C

$$v_{f11} = 0.0010291 \text{ m}^{3}/\text{kg and } v_{g11} = 3.407 \text{ m}^{3}/\text{kg}$$

$$T_{11} = 80^{\circ}\text{C}$$

$$T_{11} = 80^{\circ}\text{C}$$

$$T_{11} = 80^{\circ}\text{C}$$

$$T_{11} = 80^{\circ}\text{C}$$

$$T_{11} = 0.6$$

$$T_{11} = 0.045 \text{ m}^{3}/\text{kg}$$

$$v_{11} = 2.045 \text{ m}^{3}/\text{kg}$$

$$v_{11} = 2.045 \text{ m}^{3}/\text{kg}$$

$$v_{11} = v_{f11} + x_{11}(v_{g11} - v_{f11})$$

 $v_{11} = 2.045 \text{ m}^3/\text{kg}$

Example 12 (*p* and *x* given)

Given: $p_{12} = 80$ bar and $x_{12} = 0.6$

Conclusion:

- State 12 is **Two-phase liquid-vapor mixture**
- Use quality calculations with saturated liquid (f) and saturated vapor (_g) values from Table A-3 to compute desired properties From Table A-3 @ $p_{12} = 80$ bar

$$u_{f12} = 1308.6 \text{ kJ/kg and } u_{g12} = 2569.8 \text{ kJ/kg}$$

$$u_{12} = 0.6$$

$$u_{12} = 0.6$$

$$u_{12} = u_{f12} + x_{12}(u_{g12} - u_{f12})$$

$$u_{12} = 2065.3 \text{ kJ/kg}$$

$$u_{12} = 2065.3 \text{ kJ/kg}$$

$$u_{f12} = 1308.6$$

$$u_{g12} = 2569.8$$

$$u_{12} = u_{f12} + x_{12}(u_{g12} - u_{f12})$$
$$u_{12} = 2065.3 \text{ kJ/kg}$$